Новый квантовый микроскоп, работающий за пределами фундаментальных ограничений, позволяет увидеть «невозможные» вещи | статьи на re-travel

Австралийские исследователи продемонстрировали работу созданного ими нового квантового микроскопа, который работает за пределами барьера фундаментальных физических ограничений и позволяет увидеть столь малые вещи, которые невозможно увидеть при помощи даже самых мощных классических оптических микроскопов. Для получения изображений с высочайшей на сегодняшний день четкостью и разрешающей способностью это новое устройство «сжимает» свет и использует некоторые из причуд таинственного квантового мира.

Оптические микроскопы работают за счет освещения исследуемого образца лучами света. Но свет от обычного источника, используемого в устройствах низшего и среднего класса, имеет совершенно случайную природу, что само по себе является источником шумов и помех. Поэтому в устройствах высшего класса для освещения образца используется намного более упорядоченный свет лазера. Дальнейшего увеличения разрешающей способности оптических микроскопов добиться достаточно легко — необходимо лишь увеличить интенсивность освещения. Однако в определенный момент число фотонов, проходящих сквозь образец, становится столь велико, что это вредит образцу и вызывает в нем необратимые изменения, что особенно пагубно, если этими образцами являются живые клетки или микроорганизмы.

Описанная выше проблема как раз и является упомянутым фундаментальным барьером разрешающей способности и чувствительности микроскопов. Но недавно исследователи из университета Квинсленда, Австралия, нашли путь, позволяющий преодолеть этот барьер за счет использования некоторых причудливых законов и явлений мира квантовой механики.

В новом микроскопе используются два луча лазерного света, один из которых проходит через кристалл титанил-фосфата калия. Это приводит к созданию квантовых корреляций между парами фотонов в луче света, что, в свою очередь, при помощи таких пар позволяет получить большее количество информации об исследуемом образце, чем это возможно при помощи обычных незапутанных фотонов. И, в конечном счете, на датчике получается изображение с высокой разрешающей способностью и с большей четкостью при более слабой интенсивности освещения образца.

«В лучших оптических микроскопах используются лазеры, яркость которых может в миллиарды раз превышать яркость Солнца» — рассказывает Уорик Боуэн (Warwick Bowen), ведущий исследователь, — «Хрупкие биологические системы могут выдерживать такое воздействие в течение очень короткого времени, которого недостаточно для получения качественного изображения. Квантовая запутанность, используемая в нашем микроскопе, позволяет увеличить четкость изображения на 35 процентов при таком уровне освещения, которое не уничтожает живые объекты. К примеру, мы можем рассматривать живые клетки в течение целой минуты и видеть при этом такие биологические структуры, которые являются невидимыми для обычных микроскопов».

Ученые проверили возможности квантового микроскопа на дрожжевых клетках, и они смогли четко и во всех подробностях рассмотреть такие вещи, как клеточную мембрану, цитозоль и органеллы. Однако, в этой перспективной технологии имеется много того, что требует дальнейших улучшений и модернизации. При значительном усложнении конструкции микроскопа выгода от использования квантовых технологий не так уж и велика, всего 35 процентов, а сам метод в целом не столь эффективен, как хотелось бы. Поэтому ученые продолжат свою работу, а их целью является увеличение эффективности и других параметров квантового микроскопа минимум на порядок их величин.

Источник: dailytechinfo.org